第四十七章 势如破竹
第四十七章 势如破竹 (第2/2页)在这一道证明题里,秦克轻车熟路地运用反证法加上伯努利不等式、辅以数学归纳法,只花了三分钟左右就写完了反设、归谬、结论的三个步骤,完成了证明过程。
当然,如果没想到反证法,这题就会非常棘手了。
余光瞟了眼左右的考生,见包括全文彦在内,都还在与前面的填空题苦战,秦克心情舒畅地进军第二道大题。
后面的九道大题有三道解答题,六道证明题,难度不一,但在秦克眼里就像初中数学题一样简单,他斩瓜切菜地刷刷刷搞定,毫无迟滞,看看墙上的挂钟,才过去了半个小时不到。
他只是匆匆看了遍前面的正卷,见没漏题便不再检查了。
他对自己做的答案有绝对的信心,根本不可能出错。
好吧,继续搞定两道附加大题,希望有点难度,不然太无趣了。
秦克打了个呵欠,打醒两分精神翻开了第二份副卷,也就是附加卷。
据老郑所说,附加卷里的两道大题会是准省赛级别的难度,不会逊于上次老郑发下来的那三道大难题,秦克还是抱着点期待的。
不难点,他怎么拉分来稳保第一名?
“附加题1:请问,从1,2,…,13这13个数中至多可以选出几个数,使得选出的数中,每两个数的差既不等于5,也不等于8?”
秦克瞪大了眼睛,不会吧?这么巧?
为什么说巧?
因为前段时间他给宁青筠举例讲解奥数技巧时,就曾拿过一个类似的题目作为例子(出自系统知识)。
“例:求解,现在有13个小朋友,他们手拉手围成了一个圆圈,现在需要从中选出几个人,使他们互不相邻,请问最多能选出多少个符合条件的小朋友?”
什么?两道题看起来只有一点点的类似?
不要紧,只要用“化归法”,就能将现在这附加题1,化归为这道已解出来的小朋友手拉手例题。
提到“化归”方法,其实参加过奥数的人应该都不陌生,这是一种很常见的解题思想,其核心就是“化简”。
简单来说就是把要解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题中去,从而更简单地解决原问题。
匈牙利的数学家罗莎·彼得在她的名著《无穷的玩艺:数学的探索与旅行》(大连理工大学出版社2018年有出版)中有个生动的笑话,可以形象地说法什么是“化归”:
你要烧水,步骤是往水壶里装满水,点燃煤气,把水壶放煤气灶上。如果条件变了,水壶里提前已装满了,该怎么办?
正常人:直接点火放煤气灶上烧。
数学家:先把水壶里的水倒掉,按之前的步骤再来一遍。
这个笑话里数学家的做法就是“化归”,把条件变化后的新问题,变回原本的熟悉问题。
当然,这只是化归的其中一种应用,化归还有把复杂问题化归为简单问题,把一般情况化归为特殊情况等等。
秦克此时用“化归”,就是要把条件变化后的新问题,变回原本的熟悉问题。